
This table maps the techniques of the taxonomy to types of techniques (see discussion section)

Refined category Technique Techinique Type
(C1.1) Integration With Clients

1.1.1 API facade Architecture
1.1.2 Edge server facade Architecture
1.1.3 API gateway facade Architecture
1.1.4 API facade per client type Architecture
1.1.5 Independent choice of communication technology Architecture

(C1.2) Integration of 3rd-party Systems Into the Application
1.2.1 Proxy microservice Architecture
1.2.2 Data replication proxy Architecture
1.2.3 CQRS proxy Architecture
1.2.4 Gradually replace the legacy system Architecture
1.2.5 Treat legacy system like a microservice Architecture
1.2.6 ESB to decouple from legacy system Architecture

(C1.3) Integration Into an Application Landscape
1.3.1 Service/API registry Process Tool to support coordination of org. units: make services/APIs easier to discover
1.3.2 Document microservice metadata Process Tool to support coordination of org. units: make services/APIs easier to understand/discover
1.3.3 Enterprise-wide standardization Process Tool to support coordination of org. units: reduce mental load by standardization
1.3.4 Enterprise service wrapper Architecture

(C3.1) Conceptual Integration
Service cut:
3.1.1 Evaluate cut with proof of concepts Architecture Evaluation of arch. decisions
3.1.2 Avoid LoC metric for evaluation Architecture Evaluation of arch. decisions
3.1.3 Decentralize the service cut Organization Responsibility of different org. units
3.1.4 Cut by non-functional characteristics Architecture
3.1.5 Cut by functional proximity Architecture
3.1.6 Cut by Domain-Driven Design Architecture
3.1.7 Cut by data entities and consistency needs Architecture
3.1.8 Cut by use-case Architecture
3.1.9 Cut by data-flow Architecture
Dataflows: Type of data exchange and transactions among microservices part of architectural view
3.1.10 Question transactions on domain level Architecture
3.1.11 Avoid transactions over multiple microservices Architecture
3.1.12 Data replication Architecture
Workflows: Workflows between microservices part of architectural view
3.1.13 Choreography over orchestration Architecture
3.1.14 Align synchronicity to business flow Architecture
Storage management:
3.1.15 Decentralize conceptual models Architecture
3.1.16 Clear responsibilities for parts of the data Organization Responsibility of different org. units
Location of business logic:
3.1.17 No domain logic into infrastructure Architecture
3.1.18 No sharing of domain-specific code Implementation Code sharing is implementation specific topic
User auth:
3.1.19 Centralized SSO Architecture



3.1.20 Token-based authentication Architecture
3.1.21 Propagate security context via headers Architecture
3.1.22 Propagate security context via tokens Architecture
UI integration:
3.1.23 Only share context information between UIs Architecture
3.1.24 UI as part of each microservice Architecture
3.1.25 UI suites Architecture
3.1.26 Micro-frontends Architecture
Conceptual error handling: Architectural decisions how to cope with errors
3.1.27 Design for failure Architecture
3.1.28 Compensations in workflows Architecture
3.1.29 Degradation of functionality Architecture
3.1.30 Domain-motivated alternatives Architecture

(C3.2) Communication Integration
General:
3.2.1 Align technical communication style to the nature of the business process Implementation
Communication security:
3.2.2 Service-to-service authentication Architecture Implementation detail, but usually part of architectural view
3.2.3 Encrypt service-to-service communication Architecture Implementation detail, but usually part of architectural view
API contracts:
3.2.4 Use APIs to decouple from implementation details Architecture
3.2.5 Resilient consumers Implementation
3.2.6 Backward-compatible APIs Implementation
3.2.7 Hypermedia to reduce coupling Implementation
3.2.8 API versioning Implementation
3.2.9 Consumer-driven contract testing Implementation
Communication error handling:
3.2.10 Circuit breaker and fail fast Implementation
3.2.11 Dead letter queue Architecture Architectural decision about interaction
3.2.12 Bulkheads Implementation
3.2.13 Timeouts Implementation
3.2.14 Bounded retries Implementation
3.2.15 Domain-motivated implementation details Implementation

(C3.3) Deployment Integration
General:
3.3.1 CI/CD for automated deployment Operation
3.3.2 Immutable deployments Operation
3.3.3 Reduce deployment coordination Process
3.3.4 Sidecars/service meshes Operation
Service configuration:
3.3.5 Avoid hardcoded configurations Implementation
3.3.6 Avoid default values Implementation
3.3.7 Environment variables for configuration Implementation
3.3.8 Configuration server for configuration Architecture
3.3.9 Configuration/deployment as code Operation
3.3.10 Internal integration proxy to reduce coupling Architecture Architectural element
3.3.11 DNS for routing Operation



3.3.12 Service instance discovery Architecture Architectural element
3.3.13 Service instance discovery by message broker Architecture Architectural element
Deployment environments:
3.3.14 Virtualize the network Operation
3.3.15 Offer single-node deployment Operation
3.3.16 Provide resources as a service (Cloud) Operation
3.3.17 FaaS/serverless platform to abstract infrastructure Operation
3.3.18 Cluster management by container orchestrator Operation
Zero-downtime deployment:
3.3.19 Rollbacks Operation
3.3.20 Rolling updates Operation
3.3.21 Canary releases Operation
3.3.22 Blue-green deployments Operation
Deployment artifacts:
3.3.23 Containers as portable deployment artifacts Operation
3.3.24 Artifact registry Operation

(C3.4) Global Knowledge Integration
Understanding the system:
3.4.1 Standardize location of microservice documentation Process
3.4.2 Responsibility documentation Process
3.4.3 Standardize API documentation Process
Organizational structure:
3.4.4 Microservice managed by one team Organization
3.4.5 Align architecture with org structure Organization
3.4.6 Overarching organizational framework Process
3.4.7 Push more responsibility to teams Organization
3.4.8 Group services based on domain proximity Organization
Coordination between teams:
3.4.9 Establish a common vocabulary Process
3.4.10 Establish common cultural values Process
3.4.11 Standardization Process
3.4.12 Adhoc over formal communication Process
3.4.13 Regular cross-team discussions Process
3.4.14 Thematic boards for decision making Organization Could also be viewed as process, but usually have some organizational aligment
3.4.15 Service templates Process
3.4.16 Collaborate on libraries Process
3.4.17 Communicate API changes Process
Understanding the system's behavior:
3.4.18 Standardize logging / monitoring / tracing Process
3.4.19 Aggregate logging/monitoring information in a central place Operation
3.4.20 Monitor metrics at different levels Operation
3.4.21 Use dashboards and visualizations Operation
3.4.22 Use a tracing mechanism Operation
3.4.23 Automate anomaly detection and alerting Operation

(C4.1) Scaling Microservice Instances
4.1.1 Stateless design Architecture
4.1.2 Auto-scale instances based on metrics Operation



4.1.3 Load balancing between instances Architecture
4.1.4 Load balancing by message broker Architecture
4.1.5 Database clustering and sharding Operation

(C4.2) Service Autonomy
4.2.1 Self-contained design Architecture
4.2.2 Storage area isolation per microservice Architecture

(C4.3) Team Autonomy
4.3.1 Cross-functional teams Organization
4.3.2 Experiments Process
4.3.3 Education programs Process
4.3.4 Support by a task force team Organization
4.3.5 Use of established patterns Process
4.3.6 Proximity to domain-knowledge holders Organization
4.3.7 Local proximity of team members Organization


